4.虚拟化会导致性能下降
Hadoop最初的设计只是运行实体服务器上,然而随着云计算发展,许多企业都希望能作为云数据中心提供服务。之所以虚拟化Hadoop,企业首先要考虑管理基础设施的扩展性,认识到扩展计算资源,比如虚拟Hadoop节点在数据和计算分开时会对性能有所帮助,否则如果你关闭某个Hadoop节点将丢失上面的所有数据或者添加一个没有数据的空节点。
5.Hadoop只可以在数据中心运行
对于在SaaS云服务解决方案,许多云服务允许云端运行Hadoop、SQL,这无疑可以帮助企业省下数据中心建造投资的时间和金钱。特别是对于公有云情况下,Java开发者可以从Spring Data for Hadoop以及一些其它的GitHub用例中获益。
6.Hadoop对虚拟化无经济价值
Hadoop对虚拟化无经济价值
Hadoop被很多人认为,尽管在商用服务器上运行,添加一个虚拟层在带来额外支出的同时并不会有额外的价值收益,但其实这个说法并没有考虑到数据和数据分析事实上都是动态的。虚拟化基础设施同样可以减少物理硬件数量,让CAPEX(资本支出)直接等于商用硬件成本,而通过自动以及高效利用共享基础设施同样可以减少OPEX(运营成本)。
7.Hadoop不能运行在SAN或NAS上
尽管Hadoop在本地磁盘上运行,对于中小型集群一样可以在一个共享的SAN环境下体现良好的性能表现,而高带宽比如10GB以太网、PoE以及iSCSI对性能同样有很好的支持。
由此,大数据成为行业追逐的热点,以上七大有关大数据“误解”问题的客观看待。如同不同项目需求不同,Hadoop是一个工具来帮助企业更好的应对大数据问题。无论是面对数据网格的GemFire 或SQLFire,还是面向消息的RabbitMQ中间件,一个完整的SaaS解决方案如今比在Hadoop环境更容易实现。