"啤酒"和"尿布"两个看上去没有关系的商品摆放在一起进行销售、并获得了很好的销售收益,这种现象就是卖场中商品之间的关联性,研究"啤酒与尿布"关联的方法就是购物篮分析(market basket analysis)。
商品相关性分析是购物篮分析中最重要的部分,目前,购物篮分析的计算方法都很成熟,在进入20世纪90年代后,很多分析软件均将一些成熟的购物篮分析算法打包在自己的软件产品中,成为了软件产品的组成部分。由此可见,大数据其实体现在生活的每一个角落。
啤酒与尿布,看似风马牛不相及的商品,经过大数据的分析,得出了惊人的结论,通过这个发现,我们可以制定与之对应的策略,提高超市业绩,也发现了荒谬背后的逻辑。
大数据故事:纸牌屋
《纸牌屋》这部火遍了全中国的,讲述一名美国白宫内的政客,如何不择手段的向上攀爬,竞选成为美国总统电视剧,究竟是如何取得巨大成功,它又与大数据擦出了什么样的火花呢?
纸牌屋
据外国媒体报道毫无疑问,《纸牌屋》是“大数据”出来的。据称,该部电视剧,运用所有收集的大数据,制作了一部观众最想看的电视剧。“比你自己还要了解你”就是美国视频公司Netflix做的事。
用户只要登录Netflix,其每一次点击、播放、暂停、喜欢哪个桥段、哪里用户喜欢转发甚至看了几分钟就关闭视频,都会被作为数据进入后台分析。
每天用户在Netflix上产生3000万多个行为,Netflix的订阅用户每天还会给出400万个评分,还会有300万次搜索请求,询问剧集播放时间和设备。这样一来,就能精确定位观众的偏好,利用大数据定制《纸牌屋》。
大数据故事:保护早产婴
有数据显示,随着社会不断的发展,社会结构不断变化,产妇的产龄呈上升趋势,导致早产婴儿数量正在上升。在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
随着医疗信息化的深入发展,医院业务数据呈爆炸式增长,几乎可以纳入大数据范畴。医疗信息化必然会拥抱大数据,医疗行业本身就是具有大数据特性的行业。