服务器
    作者:王迪

    大数据“流言”:Hadoop和云分析七误解

         [ 中关村在线 原创 ] 暂无评论

      对于Hadoop技术而言,可以说是开源领域的传奇,然而如今业界还伴随着一些流言,这些流言可能会导致IT高管们带着“有色”的观点去制定策略。

      如今,数据量在以惊人的速度增长,从IDC分析师报告中2013年数据存储上的增长速度将达到53.4%,AT&T更是声称无线数据的流量在过去的5年内增长200倍,从互联网内容、电子邮件、应用通知、社交消息以及每天接收的消息都在显著的增长,这也是众多大企业都聚焦大数据的原因所在。

    大数据“流言”:Hadoop和云分析七误解

      毫无疑问,Hadoop成为解决大数据需求的主要投资领域之一,而类似Facebook等互联网巨头在都公开的吹捧Hadoop上取得的成功,同样初入大数据领域的公司也必先着眼于Hadoop。但对于Hadoop技术而言,是一个多维的解决方案,可以通过不同的方式进行部署和使用。下面就了解一些关于Hadoop和大数据的七大错误理念:

      1.大数据仅仅是容量

      对大数据来说,除了指体积之外,还经常提到Variety(多样)、Variability(可变)、Velocity(速度)和Value(价值)。关键点在于大数据并不是体积上的增长,更多是未来的实时分析、结构化和非结构化数据的发展,并被企业CIO用于更好的决策。

        综上所述,并不是只有分析大数据才会获得价值。举个例子,存储和分析1PB的超时限数据的价值可能比不上实时分析1GB的数据,而从“新鲜”的数据上获得价值比解剖过时的数据更具价值。

      2.传统SQL不能在Hadoop上使用

      众多厂商在Hadoop上投入精力,布局市场战略时,十分清楚HDFS和MapReduce受限于处理类似SQL语言的能力,这也是Hive、Pig和Sqoop最终得以推广的原因。更多企业通过Hadoop和SQL兼容来管理大量的数据,Pivotal HD是结合SQL并行处理资料库与Hadoop 2.0,针对企业资料分析需求而优化的Hadoop强化版本。 

       3.Hadoop是唯一的新IT数据平台

      谈到数据平台,大型机在IT投资组合里有是一个长期投资,与ERP、CRM和SCM这些系统一样演变至今。而面对大数据时代,大型机不想被架构遗弃,必须展示在现有IT投资环境中的价值,而许多客户遇到速度、规模和成本的问题,通过vFabric SQLFire这样的内存大数据网络去解决高速数据存取,促进大型机批处理或实时分析报告这些问题。

    提示:支持键盘“← →”键翻页
    本文导航

    关注排行榜

    产品品牌

    文章推荐

    互动沙龙

    相关内容 网友评论 返回首页
    专家咨询